LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2010

MT 2961 - PROBABILITY THEORY AND STOCHASTIC PROCESSES

Date \& Time: 26/04/2010 / 1:00-4:00
Dept. No. Max. : 100 Marks

PART-A

Answer all the questions:

$(10 \times 2=20)$

1) Find the constant C if the following represents the probability mass function of a random variable X .

$$
\mathrm{p}(x)=C\left(\frac{1}{3}\right)^{x}, x C\left(\frac{1}{3}\right)^{x}, x=1,2,3 \ldots \text { zero elsewhere. }
$$

2) Let the pdf of a continuous type random variable X be

$$
f(x)=(x+2) / 18,-2<x<4, \quad \text { zero elsewhere. Find } P\left(X^{2}<9\right) .
$$

3) Define convergence in distribution of a sequence of random variables $\left\{X_{n}\right\}$ to X.
4) Define periodicity of a Markov chain. When do you say that state i is aperiodic?
5) If A and B are independent events. show that A and B^{c} are independent.
6) State central limit theorem .
7) Obtain the MGF of a r.v with probability mass function $\mathrm{p}(\mathrm{x})=\left(\frac{1}{2}\right)^{x} \quad \mathrm{x}=1,2,3, \ldots$. zero elsewhere.
8) Show that communication of states in a Markov chain satisfy Transitive relation.
9) State the postulates of Poisson process.
10) State any two properties of distribution function .

PART-B

Answer any 5 questions:
11) State and prove Bayes theorem .
12) Derive the mean and variance of gamma distribution with two parameters .
13) Let $X_{1}, X_{2} \ldots X_{n}$ be n independent observations from $p(x)=p^{x} q^{1-x}$ $\mathrm{x}=0,1$ zero otherwise , $\mathrm{p}+\mathrm{q}=1$. Show that $\sum \frac{X_{i}}{n}$ converges in probability to p.
14) Let X_{n} be a Markov chain with transition probability matrix P and states $0,1,2$

$$
P=\left(\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

and the initial distribution is $\mathrm{P}\left[\mathrm{X}_{0}=\mathrm{i}\right]=\frac{1}{3}, \mathrm{i}=0,1,2$.

Find i) $P\left[X_{3}=2, X_{2}=1, X_{1}=0, X_{0}=0\right]$
ii) $\mathrm{P}\left[\mathrm{X}_{2}=1\right]$
iii) $P\left[X_{3}=2, X_{2}=1, / X_{1}=1, X_{0}=0\right]$
15) a) Show that communication of states in a Markov chain is an equivalence relation.
b) Show that if $\mathrm{i} \leftrightarrow \mathrm{j}$ and if $\mathrm{i} \quad$ is recurrent then j is also recurrent.
16) Let X and Y have the joint pdf $f(x, y)=8 x y, 0<x<y<1$ zero otherwise obtain $E[X / Y=y]$, $\operatorname{Var}[X / Y=y]$.
17) Given the joint distribution of the random variables X and Y as
$(x, y) \quad(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)$
$\mathrm{P}(\mathrm{x}, \mathrm{y}) \quad \frac{2}{12} \quad \frac{3}{12} \quad \frac{2}{12} \quad \frac{2}{12} \quad \frac{2}{12} \quad \frac{1}{12}$
Obtain the correlation coefficient between X and Y.
18) Ten pairs of shoes are in a closet. Four shoes are selected at random .Find the probability that there is atleast one matching pair among the four selected.

PART-C

Answer any two questions:
$(2 \times 20=40)$
19) a) Let A_{n} be an increasing sequence of events. Show that $P\left(\lim A_{n}\right)=\lim P\left(A_{n}\right)$. Deduce the result for decreasing events.
b) State and prove Boole's Inequality .
c) Give an example to show that pairwise independence does not imply Independence.
$(10+5+5)$
20) a) Show that almost sure convergence implies convergence in probability . Is the converse true? Justify .
b) Let $X_{1}, X_{2} \ldots . X_{n}$ be a random sample from $f(x)=\frac{1}{\theta}, \quad 0<x<\theta$, Zero elsewhere . Let Y_{n} be the $n^{\text {th }}$ order statistic . Show that Y_{n} converges in distribution to a degenerate random variable .
c) State and prove Chebyshev's inequality . $\quad(10+5+5)$
21) a) State the postulates of a Birth and death process. Obtain the Kolmogorov forward and backward differential equations .
b) obtain the expression for $P_{n}(t)$ in a Yule process .
22) a) Let $X_{1}, X_{2}, \ldots X_{n}$ be independent $N(0,1)$ variables. Obtain the pdf of $Y_{1}=X_{1} / X_{2}$
b) Derive the mean and variance of the random variable X with $P(X=x)=\binom{x+r-1}{r-1} p^{r} q^{\times} \quad x=0,1,2 \ldots \ldots$
c) A box contains M white and $N-M$ black balls. A sample of size n is drawn i) with replacement ii) without replacement . Let X denotes the number of white balls. Obtain the probability distribution of X in both the cases .
(7+7+6)

